1,357 research outputs found

    On the representation of polyhedra by polynomial inequalities

    Full text link
    A beautiful result of Br\"ocker and Scheiderer on the stability index of basic closed semi-algebraic sets implies, as a very special case, that every dd-dimensional polyhedron admits a representation as the set of solutions of at most d(d+1)/2d(d+1)/2 polynomial inequalities. Even in this polyhedral case, however, no constructive proof is known, even if the quadratic upper bound is replaced by any bound depending only on the dimension. Here we give, for simple polytopes, an explicit construction of polynomials describing such a polytope. The number of used polynomials is exponential in the dimension, but in the 2- and 3-dimensional case we get the expected number d(d+1)/2d(d+1)/2.Comment: 19 pages, 4 figures; revised version with minor changes proposed by the referee

    Polynomial inequalities representing polyhedra

    Full text link
    Our main result is that every n-dimensional polytope can be described by at most (2n-1) polynomial inequalities and, moreover, these polynomials can explicitly be constructed. For an n-dimensional pointed polyhedral cone we prove the bound 2n-2 and for arbitrary polyhedra we get a constructible representation by 2n polynomial inequalities.Comment: 9 page

    Densest Lattice Packings of 3-Polytopes

    Get PDF
    Based on Minkowski's work on critical lattices of 3-dimensional convex bodies we present an efficient algorithm for computing the density of a densest lattice packing of an arbitrary 3-polytope. As an application we calculate densest lattice packings of all regular and Archimedean polytopes.Comment: 37 page

    Implications of a wavelength dependent PSF for weak lensing measurements

    Get PDF
    The convolution of galaxy images by the point-spread function (PSF) is the dominant source of bias for weak gravitational lensing studies, and an accurate estimate of the PSF is required to obtain unbiased shape measurements. The PSF estimate for a galaxy depends on its spectral energy distribution (SED), because the instrumental PSF is generally a function of the wavelength. In this paper we explore various approaches to determine the resulting `effective' PSF using broad-band data. Considering the Euclid mission as a reference, we find that standard SED template fitting methods result in biases that depend on source redshift, although this may be remedied if the algorithms can be optimised for this purpose. Using a machine-learning algorithm we show that, at least in principle, the required accuracy can be achieved with the current survey parameters. It is also possible to account for the correlations between photometric redshift and PSF estimates that arise from the use of the same photometry. We explore the impact of errors in photometric calibration, errors in the assumed wavelength dependence of the PSF model and limitations of the adopted template libraries. Our results indicate that the required accuracy for Euclid can be achieved using the data that are planned to determine photometric redshifts

    Cone-volume measures of polytopes

    Full text link
    The cone-volume measure of a polytope with centroid at the origin is proved to satisfy the subspace concentration condition. As a consequence a conjectured (a dozen years ago) fundamental sharp affine isoperimetric inequality for the U-functional is completely established -- along with its equality conditions.Comment: Slightly revised version thanks to the suggestions of the referees and other readers; two figures adde

    Integer Knapsacks: Average Behavior of the Frobenius Numbers

    Full text link
    The main result of the paper shows that the asymptotic growth of the Frobenius number in average is significantly slower than the growth of the maximum Frobenius number
    corecore